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O F  T H E  D I S L O C A T I O N  C O R E  F O R  A C L O S E - P A C K E D  A T O M I C  L A Y E R  

V. M.  K o r n e v  a n d  V .  D.  K u r g u z o v  UDC 539.375 

A model description of narrow dislocation cores is obtained. The discrete structure of the 

dislocation core is revealed in the Frenkel'-Kontorova and Peierls models. A model of the 
dislocation core is proposed that agrees well with the concepts of solid mechanics. 

I n t r o d u c t i o n .  It  is well known that  the stress-strain state caused by dislocations cannot be described 
by one-dimensional models. The stress, displacement, and strain fields are described adequately by the theory 
of elasticity [1, 2] only at  a considerable distance from the dislocation center. In the polar coordinates (r, 0) [2], 
the elastic stress field of an edge dislocation is given by 

D sin 0 D cos 0 #b 
- -  ~ D = . ( 1 )  O' r r  -~" O'00 = r ' Crr0 = r ' 2~r(1 -- v) 

Here the origin of the polar coordinates (r, 0) coincides with the center of the edge dislocation, # is the shear 
modulus, ~ is Poisson's ratio, and b is the magnitude of the Burgers vector for the edge dislocation. The 
stress field (1) has the form f(O)/r and does not possess radial-symmetry. 

To describe the stress-strain state of the dislocation core, it is necessary to use a discrete model that  
takes into account the structure of a crystal lattice. Moreover, in specific calculations, one should use the 
interatomic-interaction potentials that  have a clear physical meaning and employ computational techniques 
for solving problems with  strong physical and geometrical nonlinearities. 

Predvoditelev et al. [1, p. 184] pointed out that  'hnost specific features of the behavior of dislocations 
that  are responsible for the mechanical properties of crystals . . .  depend strongly on the structure of the 
dislocation core." At the  present time, the commonly accepted concept of the plastic-deformation mechanism 
in the presence of a dislocation is the following [1, 2]: the larger the dislocation core, the more readily plastic 
slipping occurs in a crystal  with the dislocation. 

D i s c r e t e  M o d e l  o f  a Dis loca t ion  Core .  It is rather difficult to s tudy  the stress-strain s tate  of an 
edge dislocation in full measure; moreover, certain difficulties arise in the interpretation of numerical results 
obtained. Therefore, we will consider the simplest two-dimensional dislocation models proposed by Frenkel' 
and Kontorova [3] and Peierls [4]. 

Frankel'-Kontorova Model. The interaction between two rows of atoms in a close-packed lattice is 
considered. The lower row consists of motionless atoms fixed at the lattice nodes and generates a periodic 
force field. The upper row is a chain of atoms which can be displaced in the horizontal direction. We first 
examine the case where the atoms in the lower and upper rows form perfect three-atomic cells. Then, a single 
atom is introduced normally to the upper row, leading to displacement of the atoms of the upper row and 
formation of a dislocation (Fig. 1). 
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Fig. 1 

The  action of interatomic forces is assumed to be central  wi th  the Morse interaction potential  [5] 

U(r) = D[e -2a(~-~) - 2e-~(~-r~)],  (2) 

where r is the distance between the a toms,  re is the equilibrium position, and D and a are constants.  

For r -- re (equilibrium state),  the central interaction force is equal  to zero, for r < re, the force is repulsive 

(negative), and for r > re, the force is a t t rac t ive  (positive), which a t ta ins  a maximum fin at  a certain distance 
rm. With  fur ther  increase in the distance between the atoms, the central force of their  interaction decreases, 
and at a distance 2r~, it is an order of magni tude smaller than  its maximum value. The  first derivative of 

potential  (2) yields the following expression for the central force 

ou(r) = 2Dde_ (,_re) _ e_2 U_re)], 
f ( r ) - -  Or 

whence rm = re + In (2 / a )  and fm -- Da/2.  Calculations were performed for the following dimensionless 

constants: D = 3, a = 1.4, and re = 1. 
Numerical Analysis of Deformation of an Atomic Lattice. The nonlinear problem of atomic lattice 

deformation is solved by the fmite-element method [6]. Since the  finite-element size agrees with the atomic 
lattice constant,  we arrive at the problem of the mechanics of deformable solids with a s tructure where the 

interaction of the s t ructural  elements is determined by the acting physical potentials. The  deformation of the 

atomic lattice is similar in character to tha t  of a bar s t ructure (truss): the lattice a toms  and the segments 
connecting the a toms  can be treated as nodes of a truss and nonlinear bars, respectively (Fig. 1). Each 

a tom in the latt ice is acted upon by external  forces and the forces exerted by the neighboring atoms. The 
equations of mot ion of the atomic lattice are obtained from the vir tual  work principle: the virtual work of 

internal forces is equal to the virtual work of external and inertial forces. For the momen t  t, this equality is 

writ ten in the form 
r~ 

y ]  A(t) rk(t) = R(t), 
k = l  

where fk(t) is the central  force of interaction of the atoms in the k th  atomic pair, rk(t) is the distance between 
the a toms in the kth  atomic pair, R(t) is the virtual work of external  forces, and n is the number  of a toms in 

the atomic lattice. To integrate the equations of motion, we use the stepwise procedure proposed in [6]: at the 

moment  t, the equilibrium configuration and internal forces of the  atomic lattice are assumed to be known, 
and the equilibrium configuration and internal forces corresponding to the moment t +  At are determined. For 
a rather  small  integrat ion step At, the solution of the nonlinear sys tem of equations reduces to the solution of 

a linearized sys tem of equations. At each t ime step, this solution is refined by the Newton-Raphson  iterative 

procedure. Then,  the procedure is repeated for the next step. 
Korobeinikov [7] obtained the matr ices and vectors of the  finite element for an atomic pair and used 

the vir tual-work principle to derive the following linearized equat ions of atomic latt ice motion: 

MU(t  + At) + g ( t ) V  = R( t  + At)  - F(t), 
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where M is the diagonal mass matrix of the atomic lattice, U = U(t  + At) -- U(t)  is the vector of increments 
in atom displacements, K is the tangent stiffness matrix, R is the vector of the external forces acting on the 
atoms, and F is the internal-force vector. For quasistatic deformation, the inertia terms are ignored. The 
resulting equations 

K ( t ) U  = R( t  + At) -- F( t )  (3) 

are called the linearized equations of equilibrium of an atomic lattice. 
Deformation of a Three-Atomic Cell. An ideal three-atomic cell is an elementary object from which a 

plane close-packed crystal lattice is constructed (Fig. 2). Figure 2 shows the external force f as a function 
of the displacement of the third atom. When the force reaches a maximum value, the cell loses stability and 
further deformation occurs with decrease in the external force. The maximum load corresponds to the local 
maximum on the load-displacement curve. At the point of local maximum, we have det IK(t)[ = O. This 
deformed s ta te  of the atomic lattice is called the eigenstate [7"]. 

Because of large displacements and rotations, the physically nonlinear problem of atomic lattice defor- 
mation becomes geometrically nonlinear. Solutions of these problems contain eigenstates of the maximum- 
load type. The principal difficulty arising in solving these problems is that  the external force that  acts on 
the atomic lattice cannot be chosen as a monotonically increasing deformation parameter. In addition, the 
solution becomes more complicated since the tangent stiffness matrL< degenerates when the maximum load 
is reached. In this case, the Newton-Raphson iterative procedure does not converge. To overcome the indi- 
cated difficulties, according to [7], the external-force parameter is introduced as an unknown and system (3) 
is supplemented with the equation of the arc length in the (U(t) ,  A) space [U(t) is the displacement vector 
and A is the external-force parameter]. 

Kornev and Kurguzov [8] studied the behavior a three-atomic cell for different variants of fixing and 
for a slope of the external loading to the horizontal axis ~ varyfi'ng from - l r / 2  to 7r/2. Figure 3 shows 
diagrams of the limit relations ~- - a for the complex stress s ta te  (.f = a i  + ~-j). Curves 1 and 2 correspond 
to the deformation schemes 1 and 2 (in scheme No. 1, atom 2 is fixed and in scheme No. 2, its horizontal 
displacement is allowed for). These curves describe the theoretical strength of a solid for various loading 
paths and covers the entire fracture range from brittle and quasibrittle fracture (a > 0) to plastic fracture 
(a < 0). In Fig. 3, the abrupt decline of curve 2 (it becomes downward convex) on the left of the corner point 
indicates the superhigh sensitivity of the atomic lattice to occurrence of vacancies. 

We consider the following scheme of a dislocation core, which agrees well with the concepts of solid 
mechanics. Outside the dislocation core, the displacements do not  exceed values that  correspond to the local 
theoretical shear strength of the atomic lattice: u < u*. This est imate of the dislocation core size differs from 
the commonly accepted estimate (in solid-state physics) obtained from given displacements in the dislocation 
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core u < b/8 [2]. In the continual approach, a dislocation core can exist only because the external part of 

the atomic lattice of a solid is in the state of subcritical deformation. In the discrete approach, the three- 

atomic lattices in a dislocation core are in a postcritical state, and their turning over is prevented by the 

counteraction of three-atomic cells outside the dislocation core, which are in the subcritical state. 

To determine the width of the dislocation core, we solved the problem of the instability of a three- 

atomic cell in shear (see Fig. 2). The critical displacement for which instability occurs was found to be 

u* -- 0.296. For the upper-row atoms denoted by numerals 2-8 in Fig. 1, the following displacements were 

obtained: u2 --- 0.347, u3 = 0.225, u4 = 0.136, u5 = 0.078, u6 ---- 0.042, u7 = 0.023, and us --- 0.014. Thus, 

only the displacement of node 2 exceeded the critical value. For a close-packed crystal lattice, the dislocation 

core was found to be rather narrow (two interatomic distances). This is attributed to the fact that  beibre the 

instability, a three-atomic cell is rather stiff, in other words, its compliance is small for subcritical loading. 

Thus, the Frenkel '-Kontorova model [3] describes the dislocation core in a rough approximation. 

The Peierls Model [4]. The interaction of four atomic rows in a plane close-packed crystal lattice is 

considered. The lower row consists of motionless atoms fixed at the lattice nodes. The upper row is a chain 

of atoms which can be displaced in the horizontal direction. The  atoms in the second and third rows are 
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allowed to be displaced in an arbitrary direction (Fig. 4a). Two rigidly bonded atoms are introduced into 
the upper row at an angle of 60% This leads to displacements of the atoms in the second and third rows and 
the formation of a dislocation (Fig. 4b). In contrast to the one-dimensional Frenkel'-Kontorova model, the 
Peierls model is substantially two-dimensional. 

To determine the width of the dislocation core, we analyzed the instability of a cell 3-4-5, which 
is deformed under conditions of the generalized stress state. Figure 5 shows the external force versus the 
displacement of atom 4. A specific feature of this curve is the presence of two maxima. In the interval OA, 
the cell is in a subcritical state; in the interval AB, the 3-4 bond is in a postcritical state, and a repulsive 
force acts between atoms 5 and 4 (the distance between atoms 5 and 4 is smaller than re); in the interval BC, 
the 3-4 bond breaks and the 5-4 bond is in a subcritical state; in the interval CD, the 3-4 bond and the 5-4 
bond are broken. We assume that the value u* = 0.342, which corresponds to the first maximum in Fig. 5, 
is the critical displacement u* for which instability occurs. For a four-layer atomic structure (see Fig. 4b), 
the displacement of the atom No. 4 exceeds the critical value: u4 -- 0.365. The instability of the 5-6-7 cell 
is analyzed in a similar manner. In the remaining cells, the displacements of the atoms are smaller than the 
critical values. Consequently, for the Peierls model, the width of the dislocation core is also approximately 
equal to two interatomic distances. 

Conclusions .  The numerical experiment has shown that it is possible to develop a simple model 
that describes crack propagation under shear for the case where the part of the crystal structure in the 
neighborhood of the crack tip is in a subcritical state. According to the ideas of Leonov and Panasyuk [9] 
and Novozhilov [10], in formulating a sufficient criterion of quasibrittle strength for crystals, it is assumed that 
the crack tip falls in the first three-atomic cell which is in a subcritical state, and the postcritical behavior of 
the crystal structure inside the crack is modeled by the corresponding loading of the crack edges. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01- 
00692). 
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